

Sustained Climate Monitoring for Climate Services: EUMETSAT's Perspective



Jörg Schulz

joerg.schulz@eumetsat.int

Why Climate Services?

- Climate variability and change are having profound effects on society;
- Mitigation and adaptation planning needs sustainable climate services including fit for purpose climate data products;
- Society deserves full and open access to the data and methods used to produce climate products.

EUMETSAT Mandate

The primary objective is to establish, maintain and exploit
 European systems of operational meteorological satellites, taking into account as far as possible the recommendations of the WMO;

 A further objective is to contribute to the operational monitoring of the climate and the detection of global climatic changes.

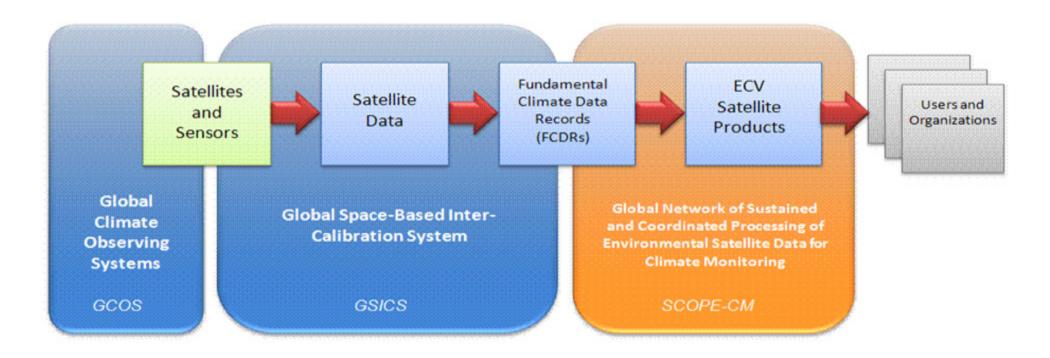
MSG-3 launch on 5 July 2012.

DELIVERY (Data and specific products)

Satellite Application Facilities (SAFs) in Europe

Member State

Cooperating State


- Support to Nowcasting and Very Short Range Forecasting
- 2 Ocean and Sea Ice
- **3** Climate Monitoring
- **A** Numerical Weather Prediction
- **5** Land Surface Analysis
- 6 Ozone and Atmospheric Chemistry Monitoring
- 7 GRAS Meteorology
- 8 Support to Operational Hydrology and Water Management
- SAF Consortium Member
- Additional Met Service Users

Coordination Group for Meteorological Satellites - CGMS

Conceptual View of End-to-End Provision of ECV CDRs

The architecture for space-based climate monitoring contributing to the Global Framework for Climate Services in the context of WMO considers the whole chain from observations to decision making.

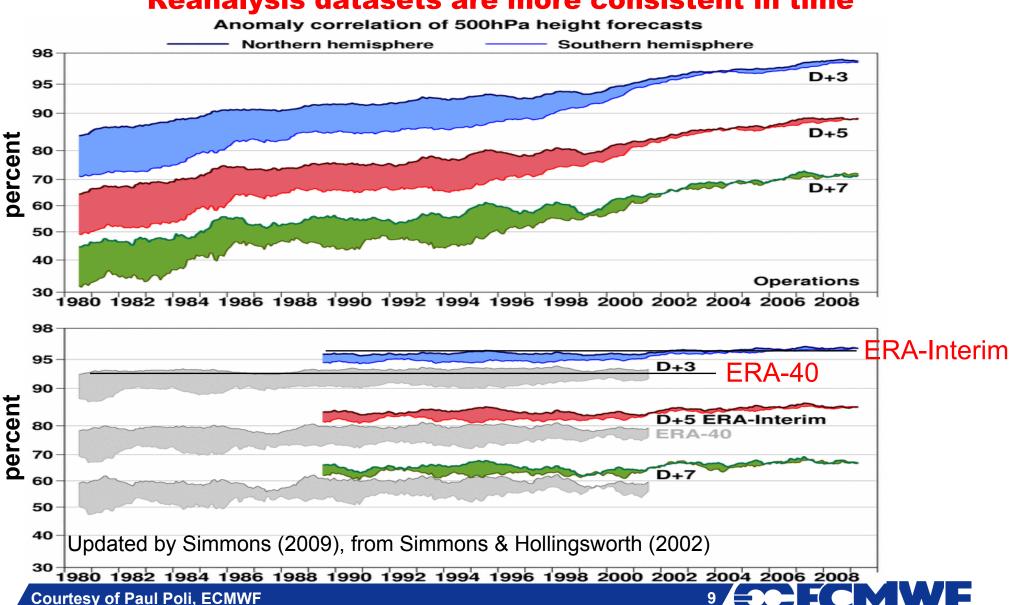
Coordination Group for Meteorological Satellites

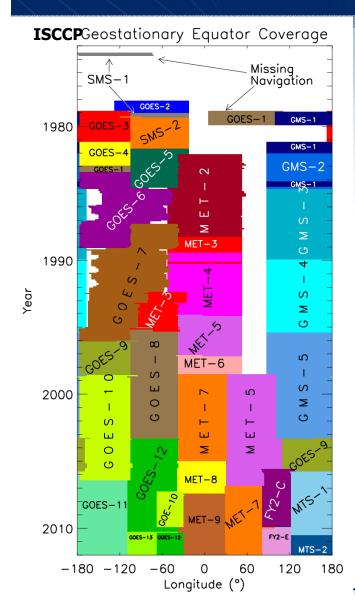
EUMETSAT Space Segment YFAR... 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 **Meteosat First Generation Data Coverage starts in 1981** METEOSAT FIRST GENERATION METEOSAT-6 Launched 2 September 1997 - Operations extended to 2016 METEOSAT-7 METEOSAT SECOND GENERATION METEOSAT-8 METEOSAT-9 Launched on 5 July 2012 METEOSAT-10 METEOSAT-11 METEOSAT THIRD GENERATION MTG-I-1 MTG-S-1 MTG-I-2 MTG-I-3 MTG-S-2 MTG-I-4 EUMETSAT POLAR SYSTEM (EPS) METOP-A Launch date 17 September 2012 METOP-B METOP-C EPS SECOND GENERATION CEAN SURFACE TOPOGRAPHY MISSION Jointly with: JASON-3 cnes JASON CONTINUITY OF SERVICES (CS) THIRD-PARTY PROGRAMMES GMES SENTINEL-3 **ESA/European Commission Missions** GMES SENTINEL-4 ON MTG operated by **EUMETSAT**

GMES SENTINEL-5 ON EPS SECOND GENERATION

Data Records (Produced 2011 - 2013)

Activity Name	Int . project	Delivery Date	Record start	Record end	Output in GB	Users	Nr. of Users	
MSG L15 Image	SCOPE-CM	Sep-11	01/01/2004	04/05/2009	32000	Reanalysis Centre (ECMWF), CM-SAF, LSA-SAF, OSI-SAF, ESA CCI	10	
GOME-2 Level 1	UNEP Ozone Ass.	Q2/2012	01/01/2007	31/12/2011	16000	O3M-SAF, ESA CCI, Research Institutes	10	/
MFG 7 Geostationary Surface Albedo	SCOPE-CM	Q3/2012	01/12/2006	31/12/2011	61	Climate Modelling (MPI-M)	5	
MFG 3 Geostationary Surface Albedo	SCOPE-CM	Q3/2012 Q3/2012	01/08/1991	31/12/1995	39	Climate Modelling (MPI-M)	5	
MSG AMV-CSR-ASR	ERA-CLIM, SCOPE-CM	Q4/2012	01/01/2004	31/12/2012	3700		5	
AVHRR Polar Winds	ERA-CLIM	Q4/2012	01/11/2006	31/12/2012	137	Reanalysis Centre (ECMWF)	5	
COSMIC Level 1	ERA-CLIM	Q1/2013	01/04/2006	31/12/2012	24600	Reanalysis Centre (ECMWF), ROM-SAF	5	
GRAS Level 1	ERA-CLIM	Q1/2013	01/11/2006	31/12/2012	5750	Reanalysis Centre (ECMWF), ROM-SAF	5]
ASCAT Level 1	ERA-CLIM	2013	01/01/2007	31/12/2012	27500	Reanalysis Centre (ECMWF), OSI-SAF, ESA-CCI	10	ł
MFG Re-Calibration - 1	ERA-CLIM	2013	01/08/1982	31/12/2012	4700	Reanalysis Centre (ECMWF), CM-SAF	10	
IASI Level 1c		2013	01/04/2007	31/12/2012	60170	Reanalysis Centre (ECMWF), CM-SAF	10	
CHAMP Level 1	ERA-CLIM	Q2/2013	01/09/2011	30/09/2008	2100	Reanalysis Centre (ECMWF), ROM-SAF	5	
GRACE Level1	ERA-CLIM	Q2/2013	01/01/2005	31/12/2012	2400	Reanalysis Centre (ECMWF), ROM-SAF	5	
MFG AMV-CSR	ERA-CLIM, SCOPE-CM	Q4/2013	01/01/1982	31/12/2012	3630	Reanalysis Centre (ECMWF)	5	
ERA-CLIM-OZONE	ERA-CLIM	Q4/2013	01/01/2007	31/12/2012	150	Reanalysis Centre (ECMWF), ESA CCI	10	

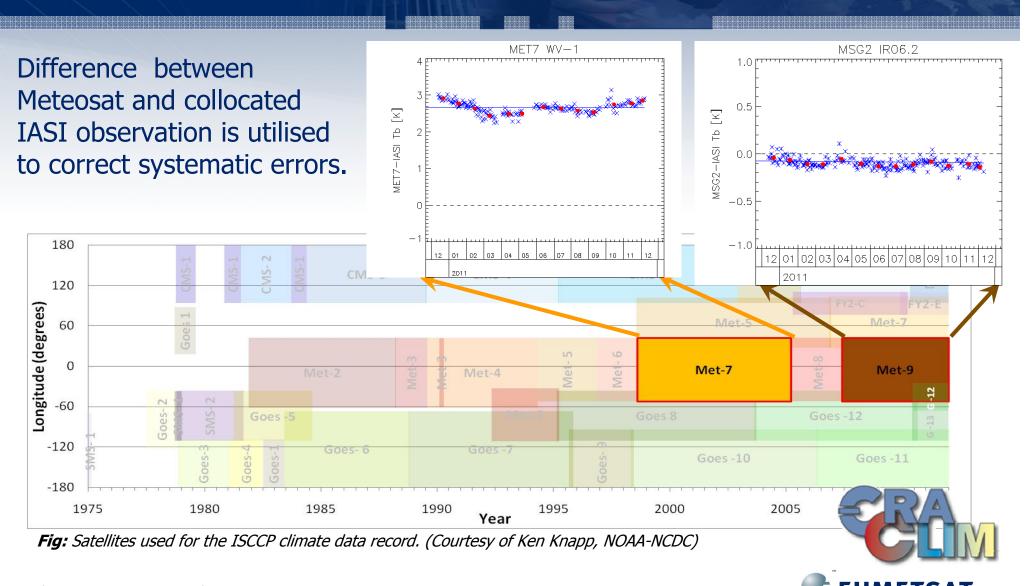

Total estimated Output volume of min. 130 TB *). Multiplying the data set volumes with the expected no. users, the expected special total delivery volume is ca. 1100 TB *)¹ – a factor 3 more than the annual delivery volume of the Archive (387 TB) in 2011.


¹Compression may bring the number down to 720 TB at the computing cost for decompression.

Raising the bar:

NWP operations improve product quality over time Reanalysis datasets are more consistent in time

FCDR Creation - Scale of the Challenge



- International community has embarked on the creation of FCDRs for archived data (EUMETSAT, NOAA-CDR program and similar programs);
- It is essential for fulfilling GCOS ECV requirements;
- Inter-calibration of the sensors to allow seamless products is a weakness in existing data records, e.g., GEWEX data projects;
- The creation of FCDRs has a large science component calling for collaborations of space agencies and scientists <- WCRP involvement;
- GSICS and SCOPE-CM are the right frameworks to make progress and achieve GCOS goals.

Figure: Courtesy of Ken Knapp, NOAA-NCDC

Inter-Satellite Calibration To a Reference

Monitoring Change of Surface Albedo with Meteosat

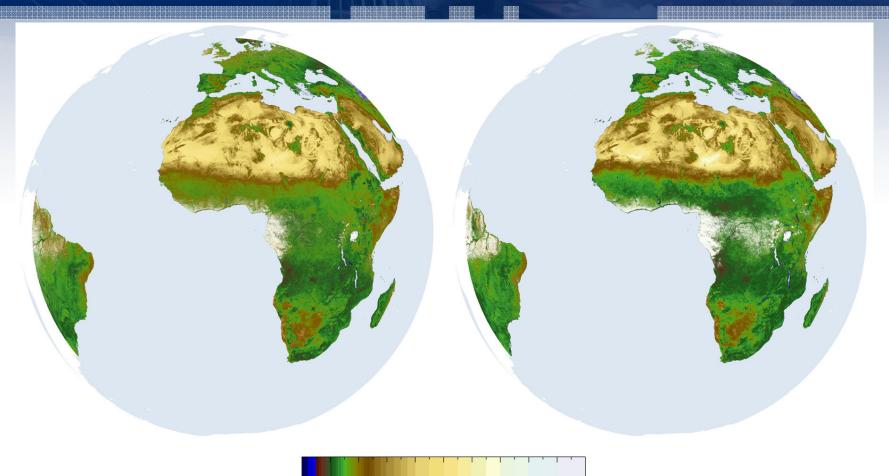
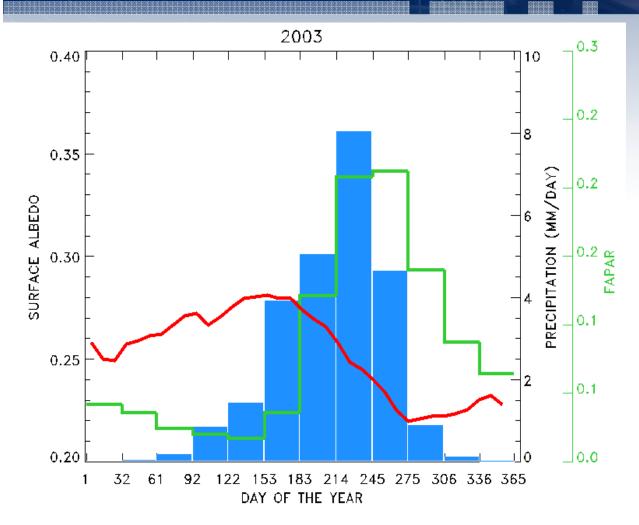
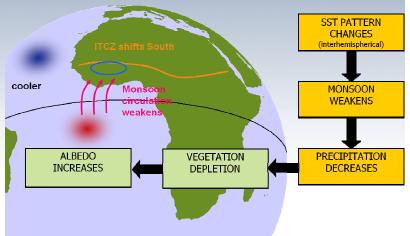
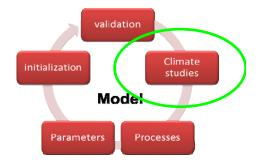




Fig. 4. Mean broadband surface albedo derived from Meteosat observations for the August–October (ASO) period for year 1984 (left) and 2003 (right). Unprocessed data are shown in white to the exception of oceans which are shown in light blue. Products available from www.eumetsat.int.

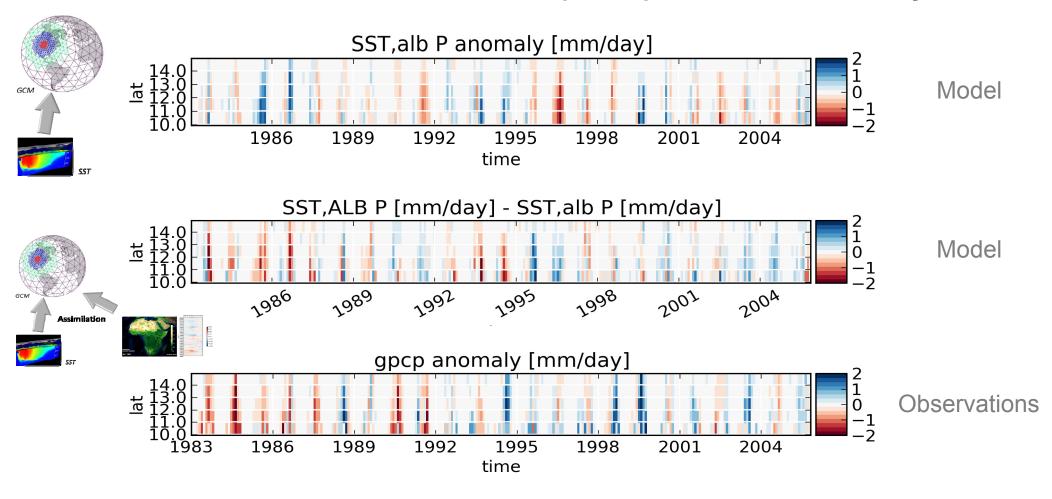
An Application of Meteosat Surface Albedo: Albedo Response to Precipitation Change



- Seasonal cycle (2003, spatial average over 8.5°W-8.5°E and 12.5°-15.5°N) of monthly mean precipitation in mm/d (blue) from the Global Precipitation Climatology Project, Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) (green) derived from SeaWiFS and surface albedo (red) derived from Meteosat 7 data.
- The delay between the onset of precipitation and growing vegetation is ~ 1 month.
- The inverse proportional effect between vegetation growth and corresponding albedo change is indicating high consistency of observations.

From observations to information

New opportunities in climate modelling using long-term satellite observations

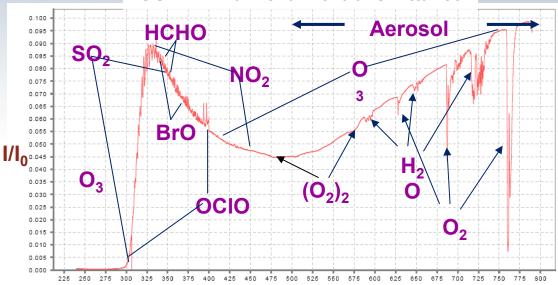

Example Sahel drought: how does the land surface affect droughts?

Assimilation of EUMETSAT albedo observations in ECHAM

... results in more realistic precipitation variability

Metop Instruments Contribute to Climate Monitoring

- Atmospheric Sounding (temperature, moisture, trace gases):
 - IR/MW imaging sounders: HIRS-4/IASI, AMSU-A/MHS
 - UV/VIS imaging sounder: GOME-2
 - Limb viewing radio occultation sounder: GRAS
- ➤ Global VIS/IR Imagery: AVHRR/3
- > 2-D wind field at the ocean surface: ASCAT
- ➤ Data Location and Collection: ARGOS terminal
- ➤ Global and Local Data Access: solid state recorder HRPT/LRPT
- ➤ Search & Rescue Terminal


Slide: 16

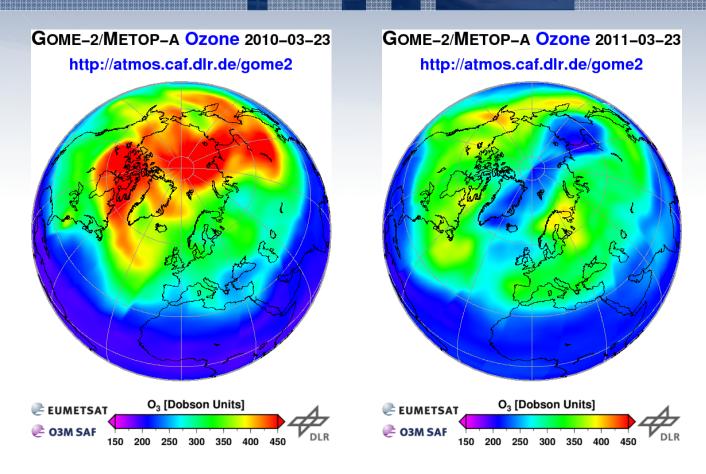
The GOME-2 instrument on Metop

Measuring atmospheric composition

GOME-2 main channel transmittance

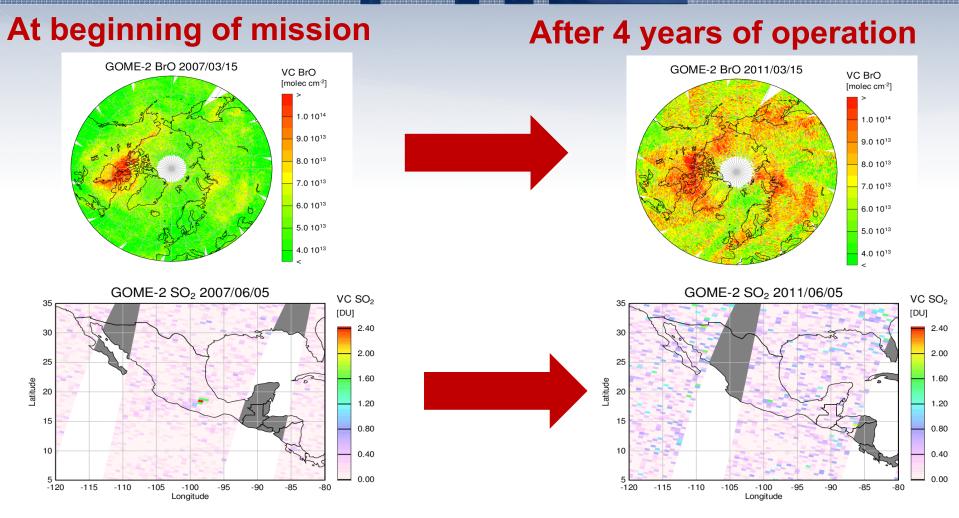
Wavelength [nm]

Orbit file sizes

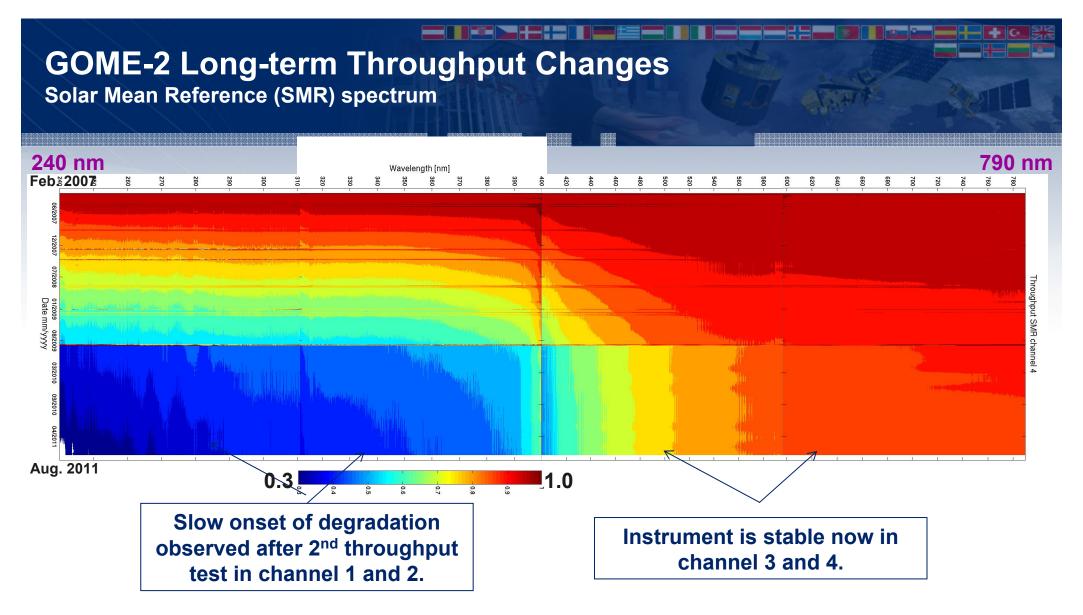

GOME-2 L1B ~ 1GB IASI L1C ~ 2GB

GOME-2:

- series of 3 instruments on Metop (Metop A launched in 10/2006)
- sun-synchronous orbit, 09:30
- ➤ 412 orbits (29 days) repeat cycle
- Global coverage 1.5 days
- > 240 nm to 800 nm
- 0.25 to 0. 5 nm spectral resolution (FWHM)
- 4 channels with 4098 energy measurements of polarisation corrected radiances (40 x 80 km²)
- 2 channels with 512 energy measurements of linear polarised light in perpendicular direction (S/P) (40 x 10 km²)

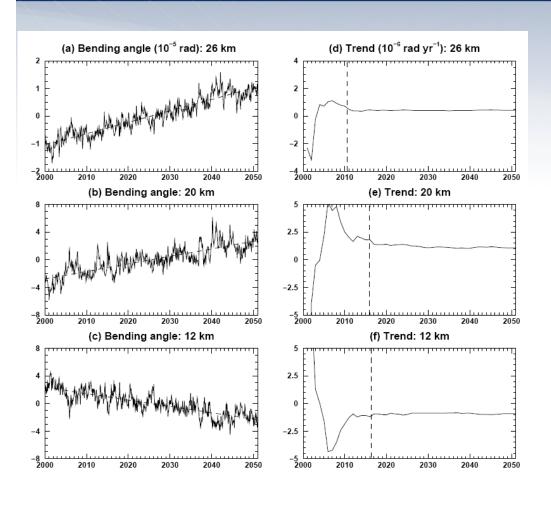

Example: Ozone Monitoring

Total Ozone Column over the Arctic, observed with GOME-2 on Metop-A Source: Ozone SAF, DLR, 2011



Motivation of GOME-2 Reprocessing

Figures courtesy of A. Richter, University of Bremen


Reprocessed signals R2 PPF 5.2 until August 2011 relative to February 2007

Atmospheric Profiling by Radio Occultation (RO)

Vertical profile of bending angle due to refraction and extinction of the signal along the path. **GPS**

Monitoring 21st Century Climate Using GPS Radio Occultation (Ringer and Healy, 2008)

- Time series of the monthly mean bending angle at equator at impact heights of 12, 20 and 26 km, respectively
- ➤ Trend is discernable (temperature change)
- ➤ Detection times with 95% confidence:
 - at 12 km: 14.6 18.2 years
 - at 20 km: 13.6 18.7 years
 - at 26 km: 9.7 11.7 years

EUMETSAT Current and Future Programme for Operational Oceanography

Mandatory Programs

EPS – until 2022


EPS-SG 2018 -2035

Meteosat First Generation (until 2016)

MSG (until 2020)

MTG (2018-2038)

Wave Forecasting

Long Term Climate

Optional Programs

Jason-2

Jason-3

Jason -CS

GMES Sentinel 3

Plus access to and use of third party mission data.

Coastal Inland

Operational Products:

- Sea Surface Temperature (SST)
- Sea Surface Heights (SSH)
- Ocean Surface Vector Winds (OVW)
- Sea Ice Concentration
- Ocean Surface Fluxes (Radiation)
- •Ocean Colour (OC) with GMES S3 Climate Data Records:
- •SSM/I FCDR (CM-SAF)
- Sea Ice Concentration (OSI-SAF)
- Ocean Surface Wind Speed (CM-SAF)
- Ocean Surface Fluxes (Latent Heat,

Precipitation and Radiation) (CM-SAF)

12th EMS Annual Meeting & 9th European Conference on Applied Climatology, Lodz, Poland, 10

Recommendation: Build on Existing Operational Weather Satellites for Climate Services

- Use the operational "weather" satellite systems for climate their usefulness has been proven and they are pursued by WMO and others;
- There is a need for improvements, and research space agencies can address that best:
 - Improve calibration and characterisation of future instruments and establish reference system (GSICS);
 - Continue specific missions not directly relevant to weather and NWP (e.g. Earth Radiation Budget);
 - Close gaps in Essential Climate Variable (ECV) observations;
 - New research-type observations are needed for process studies in order to better understand how the climate system works;
- Improve (re-)processing capabilities for climate data and analysis (utilise existing international activities such as SCOPE-CM, CGMS, CEOS, GMES, GEO, etc.).

Conclusions

- Operational and research satellites contribute to many essential climate observations. Operational satellites provide the sustained component!
- Continuity for climate observations needs assured as part of operational weather satellite programmes such as Meteosat and Metop, i.e., the continuation of operational satellite programmes is a conditio sine qua non.
- It is prudent to build climate observations and services upon existing elements of the operational space-based GOS (Global Observing System).
- However: Additional resources/activities are needed to establish an adequate and sustained climate observing/monitoring system from space.

